1、 L Mi, DX Fu, BW Kuang, L Li*, YJ Liu, C Wang, C He, Y Chen, FL Liu, QY Wang. A study of ultra-high performance concrete/mortar very high cycle fatigue behavior based on ultrasonic fatigue testing technology. Construction and Building Materials, 2025, 479: 141471. https://doi.org/10.1016/j.conbuildmat.2025.141471
2、 T Cong, JR Wang, JT He, YJ Liu, Y Chen, FL Liu*, L Li*. Microstructure evolution and fatigue crack initiation life prediction of actual failed bearings under GRCF conditions. Engineering Failure Analysis, 2025, 169: 109148. https://doi.org/10.1016/j.engfailanal.2024.109148
3、 L Mi, BW Kuang, DX Fu, L Li*, YJ Liu*, C Wang, C He, Y Chen, H Zhang, FL Liu, QY Wang. Damage and recovery behavior of Low-replacement-rate Fly ash concrete after different High-temperature Exposures. Materials, 2024, 17: 4330. https://doi.org/10.3390/ma17174330
4、 AB Chen*, L Li*, WL Ren, W Chong, QY Wang, Influence of MgO-Al2O3 hollow sphere content on the microstructure and mechanical properties of calcium hexaluminate porous ceramics. Journal of Asian Ceramic Societies, 2024, 12: 59-70. https://doi.org/10.1080/21870764.2023.2292874
5、 J Cui, L Mi, L Li*, YJ Liu, C Wang, C He, H Zhang, Y Chen, QY Wang*. Stepwise failure behavior of thermal-treated bamboo under uniaxial tensile load. Industrial Crops and Products, 2023, 204: 117313. https://doi.org/10.1016/j.indcrop.2023.117313
6、 Ab Chen*, L Li*, WL Ren, C Wang, QY Wang. Enhancing thermal insulation and mechanical strength of porous ceramic through size-graded MA Hollow Spheres. Ceramic International, 2023, 49: 33247-33254. https://doi.org/10.1016/j.ceramint.2023.08.033
7、 HQ Liu, XH Shao, K Tan, ZJ Teng, YH Du, L Li*, QY Wang*, Q Chen. Microstructural evolution and oxidation in α/β titanium alloy under fretting fatigue loading. Friction, 2023, 11: 1906-1921. https://doi.org/10.1007/s40544-022-0729-z
8、 J Cui, DX Fu, L Mi, L Li*, YJ Liu, C Wang, C He, H Zhang, Y Chen, QY Wang*. Effects of Thermal Treatment on the Mechanical Properties of Bamboo Fiber Bundles. Materials, 2023, 16: 1239. https://doi.org/10.3390/ma16031239
9、 Y Chen, SJ Wang, HZ Li, YJ Liu, C He, J Cui, Q Jiang, C Liu, QY He, QW Liang, L Li*, QY Wang*. Nanoprecipitates assisting subsurface cracking in high-strength steel under very high cycle fatigue. Scripta Materialia, 2023, 224: 115112. https://doi.org/10.1016/j.scriptamat.2022.115112
10、 AB Chen, L Li, C Wang, QY Wang. Novel porous ceramic with high strength and thermal performance using MA hollow spheres. Progress in Natural Science: Materials International, 2022, 32: 732-738. https://doi.org/10.1016/j.pnsc.2022.09.015
11、 SJ Wang, QY He, QW Liang, J Cui, Q Jiang, C Liu, C He, L Li*, Y Chen*. Failure behaviors of 34Cr2Ni2Mo steel up to very high-cycle fatigue. International Journal of Structural Integrity, 2022, 13: 829-844. https://doi.org/10.1108/IJSI-06-2022-0082
12、 FL Liu, Y Chen, C He, YJ Liu, C Wang, QY Wang*, L Li*. Creep-fatigue voids and sub-grain boundaries assisted crack initiation for titanium alloy in VHCF regime with high mean stress at 400°C. Materials Science and Engineering: A, 2022, 844: 143171. https://doi.org/10.1016/j.msea.2022.143171
13、 H Zhang*, YB Pei, XF Gong, XH Chen, W Zhang, P Zhang, L Li*, YJ Liu, QY Wang. Deformation nanotwins in a single-crystal Ni-based superalloy at room temperature and low strain rate. Materials Characterization, 2022, 187: 111865. https://doi.org/10.1016/j.matchar.2022.111865
14、 HQ Liu, J Song, XJ Cao, LP Xu, YH Du, L Li*, QY Wang*, Q Chen. Enhancement of fatigue resistance by direct aging treatment in electron beam welded Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy joint. Materials Science and Engineering: A, 2022, 829: 142168. https://doi.org/10.1016/j.msea.2021.142168
15、 YH Pu, L Li, QY Wang*, XS Shi*, L Fu, GM Zhang, CC Luan, AE Abomohra. Accelerated carbonation treatment of recycled concrete aggregates using flue gas: A comparative study towards performance improvement. Journal of CO2 Utilization, 2021, 43: 101362. https://doi.org/10.1016/j.jcou.2020.101362
16、 L Li, L Shi, QY Wang*, YJ Liu, JF Dong, H Zhang, GM Zhang*. A review on the recovery of fire-damaged concrete with post-fire-curing. Construction and Building Materials, 2020, 237: 117564. https://doi.org/10.1016/j.conbuildmat.2019.117564
17、 HE Zhang, L Li, C Yuan, QY Wang, PK Sarker, XS Shi. Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high temperature exposure and prediction of its residual compressive strength. Construction and Building Materials, 2020, 262: 120924. https://doi.org/10.1016/j.conbuildmat.2020.120924
18、 L Li, H Zhang, JF Dong, HE Zhang, P Jia, QY Wang*, YJ Liu*, Recovery of mortar-aggregate interface of fire-damaged concrete after post-fire curing. Computers and Concrete, 2019,24(3): 249-258. https://doi.org/10.12989/cac.2019.24.3.249
19、 L Li, QY Wang*, GM Zhang*, L Shi, JF Dong, P Jia, A method of detecting the cracks of concrete undergo high-temperature. Construction and Building Materials, 2018, 162: 345-358. https://doi.org/10.1016/j.conbuildmat.2017.12.010
20、 L Li, P Jia, JF Dong, L Shi, GM Zhang*, QY Wang*. Effects of cement dosage and cooling regimes on the compressive strength of concrete after post-fire-curing from 800 °C. Construction and Building Materials, 2017, 142: 208-220. http://dx.doi.org/10.1016/j.conbuildmat.2017.03.053