名: 毛江鸿


博士学位: 结构工程


  称: 研究员/博士生导师


联系电话: 13757485317


电子邮箱: jhmao@scu.edu.cn


通讯地址: 四川大学江安校区建筑与环境学院C207办公室


  编: 610041




【个人简介】

毛江鸿,研究员/博士生导师,院长助理。四川省高层次人才,四川大学双百人才。主要从事混凝土结构智能建造、智慧管养、健康监测等方面的研究工作。已主持国家自然科学基金项目4项,省部级科研项目3项,各类社会服务项目30余项。累计发表论文174篇,其中SCI收录46篇,EI收录43篇,授权国家发明专利35项,参编技术标准5部,成果获中国公路学会科学技术奖等共5项。担任国家科技部混凝土结构耐久性研究国际科技合作基地学术委员会委员,中国混凝土与水泥制品协会混凝土材料与工程检测分会副主任专家委员,四川省土木建筑学会工程诊治专业委员会副主任委员等学术兼职,担任工程科学与技术、中国腐蚀与防护学报、施工技术(中英文)等期刊青年编委。


【学习及工作经历

2021 – 至今,四川大学建筑与环境学院土木工程系     研究员/博导

2012 – 2021,浙江大学宁波理工学院土木工程系      教授

2010 – 2011,Queen’s University of Belfast      学术访问

2007 – 2012,浙江大学                     结构工程  博士

2003 – 2007,四川大学                     土木工程  学士


【主要研究领域】

混凝土结构健康监测:面向复杂环境的工程结构物联网轻量化监测技术与应用

混凝土结构智能建造:寒区混凝土低碳升温固化、大体积混凝土控温防裂等技术研发与智能系统

混凝土结构智慧养护:混凝土有害物质(海洋氯盐、寒区水分)的侵入抵抗与排除控制


【承担的主要课程】

本科生:《结构设计原理》(上)

研究生:《混凝土结构耐久性》


【指导大学生创新项目】

[1] 基于超压补偿的高原低气压环境混凝土质量提升技术研究,国家级,2022年

[2] 高原环境成型混凝土基本力学性能和耐久性试验研究,省级,2022年

[3] 高寒地区带孔洞混凝土冻裂性能的快速评估与防治措施研究,省级,2023年


【代表性科研项目】

[1] 国家自然科学基金面上项目:高原涉水桥墩冻融-冲磨共同作用下压弯性能退化机理,2024-2027

[2] 国家自然科学基金面上项目:电化学修复氢致钢筋混凝土结构延性退化机理与控制,2019-2022

[3] 国家自然科学基金重点项目:混凝土结构全寿命周期耐久性能提升与控制的基础理论研究,2017-2021

[4] 国家自然科学基金青年项目:氯离子非均匀电迁移下钢筋混凝土耐久性劣化的时空分布特征研究,2015-2017

[5] 四川省高层次人才支持计划:高原混凝土结构耐久性劣化机理与控制技术研究,2022-2027

[6] 四川省科技援藏创新项目:面向全寿命的高原装配式建筑的低碳建造与维养关键技术,2022-2023

[7] 中央高校基本科研业务费专项资金:高原服役环境下混凝土及其构件基本性能,2021-2024

[8] 浙江省自然基金项目:钢筋混凝土电化学修复过程析氢反应对疲劳性能的影响与控制研究,2018-2020

[9] 浙江省自然基金项目:疲劳和氯盐耦合作用下钢筋混凝土力学损伤演化,2014-2016

[10] 企业技术服务项目:四川某净水厂项目混凝土防渗漏关键技术研究服务,2022-2023


【代表性论

[1] Zeng Y., Mao J.*, Ren J., Zhang L., Fang K., Yue Z., Luo L., Li L. Improvement on durability of concrete by early age continuous loading treatment. Construction and Building Materials, 2024, 418: 135392

[2] Mi L., Mao J.*, Li L., Shi Q., Fang K., Li S., Deng X., L G. Microstructural damage and durability of plateau concrete: Insights into freeze-thaw resistance and improvement strategies. Structures, 2024, 60: 105888

[3] Mao J., Chen C., Xu J., Shi Q., Fang K., Lou Y., Ren J. A solution of sea sand as a sustainable fine aggregate: control harmful chloride ion by electric field force. Innovative Infrastructure Solutions, 2024,9:39

[4] Yang Z., Mao J.*, Li B., Li L., Qian W., Li H., Ren J. Early strength development of mortar with calcium formate addition curing by electric field in cold region. Magazine of Concrete Research. 2023. 00042

[5] Mao J., Zhang Y., Quan S., Gao X., Jin W. Creep Characterization of Concrete Suffering Initial Damage. ASCE-Journal of Materials in Civil Engineering. 2023, 35(6):04023110

[6] Mao J., Jia H., Wu K., Wang Q., Li S., Qian W., Xiong F. A novel method to prevent frost cracking of perforated concrete components in cold regions. Cold Regions Science and Technology. 2023.103848

[7] Mao J., Deng R., Wang Q., Wang P., Shi Q., He J., Jin L. Chloride ion control of under-constructing concrete structure based on ECE with different electric field intensities, Construction and Building Materials, 2023, 369: 130516

[8] Mao, J., Liu, Y., Xu, J., Wang, Q., Lou, Y., Desorption behavior and mechanism of chloride ions in fresh concrete mixtures under electromigration, Construction and Building Materials, 2023, 362: 129680

[9] Ren J., Li H., Zhang J., Yan S., Zhu H., Xu S., Shi S., Mao J*. Effect of salinity and polycarboxylate superplasticizer on fresh property of seawater-blended cement, Polymers, 2023, (15)3: 15030541

[10] Fan, W., Mao, J.*, Jin, W., Zhang, J., Li, Q., Yuan, F., Repair effect of cracked reinforced concrete based on electrochemical rehabilitation technology, Journal of Building Engineering, 2022, 61: 105211

[11] Fang, K., Mao, J.*, Wang P., He J., Jin L., Durability control of sea-sand concrete components utilizing strong electric field during early curing period, Construction and Building Materials, 2022, 344: 128221

[12] Mao, J., Xu, J., Zhang, J., Wu, K., He, J., Fan W., Recycling methodology of chloride-attacked concrete based on electrochemical treatment, Journal of Cleaner Production, 2022, 340: 130822

[13] Zhang, Y., Mao, J.*, Jin W., Zhang J., Creep model of high-performance concrete at different loading ages, Construction and Building Materials, 2022, 357: 129379

[14] Fan, W., Mao, J.*, Jin, W., Zhang, J., Zhong, X. Study on the durability improvement of cracked concrete based on bidirectional electromigration rehabilitation. Construction and Building Materials, 2021, 278(22), 122453

[15] Zhang, K., Zhang, J., Jin, W., Mao, J.*, Xu, F. A novel method for characterizing the fatigue crack propagation of steel via the weak magnetic effect. International Journal of Fatigue, 2021, 146(1), 106166

[16] Zhang, K., Zhang, J., Jin, W., Mao, J.*, Xu, Y., Li, Q. Characterization of fatigue crack propagation of pitting-corroded rebars using weak magnetic signals. Engineering Fracture Mechanics, 2021,1-22

[17] Fang Y, Mao J.*, Zhang Y, Jin W., Zhang J. Calculation of Deflection and Stress of Assembled Concrete Composite Beams under Shrinkage and Creep and Its Application in Member Design Optimization[J]. KSCE Journal of Civil Engineering, 2021, 25(4): 3458-3476

[18] Fan W., Mao, J.*, Jin W., Zhang J., Zhong X. Study on the durability improvement of cracked concrete based on bidirectional electromigration rehabilitation. Construction and Building Materials, 2021, 278: 122453

[19] Zhang K., Zhang J., Jin W., Mao J.*, Long J. Stiffness degradation for fatigue of reinforced concrete beams after electrochemical rehabilitation. Construction and Building Materials, 2020, 260:120455

[20] Fan W., Mao J.*, Jin W., Xia J., Zhang J., Li Q. Repair effect of bidirectional electromigration rehabilitation on concrete structures at different durability deterioration stages. Construction and Building Materials, 2020, 251:118872


【代表性发明专利】

[1] 混凝土拌合物或海砂中氯离子浓度检测方法. ZL 202110307089.6, 2024

[2] 用于监测混凝土结构表面裂缝宽度的无人机. 201710544438.X, 2024

[3] 利用无人机监测混凝土结构表面裂缝宽度的方法. ZL 201710544437.5, 2023

[4] 混凝土块的贯穿式裂缝制造设备及制造方法. ZL201811219667.5,2023

[5] 混凝土应力应变检测装置的安装结构和安装方法. ZL 201810347907.3, 2023

[6] 利用铁磁性材料的弱磁信号预测疲劳寿命的方法. 201911271662.1,2022

[7] 混凝土裂缝修复效果的检验装置和方法. ZL201810111670.9,2021

[8] 一种自浓缩阳离子的海洋结构潮汐区裂缝电沉积修复系统,ZL 201911247291.3, 2021

[9] 混凝土桥梁的裂缝形态的测量装置和直角坐标系测量方法. ZL 201910524330.3,2021

[10] 钢筋混凝土桥梁的裂缝形态的测量装置和测量方法. ZL 201910524350.0, 2021

[11] 大尺寸混凝土块的贯穿式裂缝的制造方法. ZL201811219674.5, 2020

[12] 对钢筋混凝土结构均匀性电迁除氯的方法. ZL 201710005769.6, 2019

[13] 一种提升电化学修复混凝土效率的装置及方法. ZL 201611199386.9, 2019

[14] 对钢筋混凝土结构电迁除氯时抑制氢脆的方法. ZL 201710005776.6, 2019

[15] 沿海及岛屿地区建筑废弃料的再利用方法. ZL 201610063763.X, 2018


【招生信息】

每年指导大学生创新创业项目2-3项

欢迎对混凝土结构智能建造与智慧管养有热情的本科生、研究生加入课题组。


关闭

招聘信息 | 学院介绍 | 机构设置 | 师资队伍 | 科研平台 | 学科建设 | 教学评估


学院地点:成都市四川大学行政楼一楼(望江)
党政办:85405534、85408889 教育发展中心:85405613、85463775 学生工作组:85407049
成都市双流区川大路建环大楼(江安) 党政办:85990865、85999959;学生工作组:85990968
Copyright@2010-2080 acem.scu.edu.cn All Right Reserved 版权所有:四川大学建筑与环境学院
网站备案:蜀ICP备05006382号 邮编:610000